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To show that the waveforms ¢, (t), n = 1,...,3 are orthogonal we have to prove that (all)

o0
/ ' ﬂ’m(t)"flnkt)dt =0, m # 2}

Clearly,
o 4
clp = ]_ D1 (t)en(t)dt = /0 V() Pa(t)dt
2 4
= f Py (E)a(t)dt + / Py (t)e(t)dt
- Odt———/ dt-—x2~—><( 2)
Similarly,
o3 = / _bi(t)altdt = / Y1(t)es(t)dt
- /dt——/dt——/dt+ /dt
= 0
and

X 4
n = [  da(tyba(t)dt = /0 Gat)da(t)dt

11 12 13 1 4
- Zfodt—Z/;dt-kgfzd—__—i/gdt

= 0

Thus, the signals 1, (¢) are orthogonal.

We first determine the weighting coefficients

o= /* r()en()dt,  n=1.2.3
—20

3 1
/w(t)d:;(t)dt:—%/ dt-z»%/ dt——/ dt+2/ dt=0
0 0 §

wy =
rp = /;::(t)@@)dt:-l- /gu:(t)dt-—-()
23 = /:::(t)w,ba(t)dt—-—/ dt — 2/ dt+2/ dt+2/ &t =

As it is observed, z(t) is orthogonal to the signal waveforms ¥,(t), » = 1,2,3 and thus it can not
\ represented as a linear combination of these functions. -
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Consider the signals 5;(¢), s5(1), s3(1), and s,4(r) shown in Fig. la. We wish to use the Gram-
Schmidt orthogonalization procedure to find an orthonormal basis for this set of signals.

Step 1 We note that the energy of signal s;(f) is

) T -
E, = josf(z)dz

T/3 2
jo’ (1)%ar
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The first basis function ¢,(r) is therefore
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Figure 1

Step 2 Evaluating the projection of s,(f) onto 91(2), we find that

T
Sy = jo 5,(0)0,(1)dt
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The energy of signal s,(¢) is
T 2
E, = t
2 JO 52(1)

(1)2ds

'[ZT/ 3

2T

3

The sccond basis function ¢,(2) is therefore
$5(1) = 52194 (?)

«/Ez‘sgl

(37T, T/352T/3
1 0 otherwise

¢,(1) =

Step 3 Evaluating the projection of s5(f) onto ¢,(7),

T
jo 53(0)0,(1)dt

S31

=0

and the coefficient s35 equals

T
S3p = jo 53(),(r)dt

-l B

The corresponding value of the intermediate function g;{z), with i = 3, is therefore

54(2) = 53,0,(1) = 5520,(7)

83(1)

L 2T/3<t<T
- 0, elsewhere

Hence, the third basis function ¢5(?) is

&3(H)

T 2
/Io ga(1)ds

d5(1) =
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Z _ {./3/7, 2T/351<T
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The orthogonalization process is now complete.

The three basis functions ¢;(2), (1) , and §3(r) form an orthonormal set, as shown in Fig. 1b. In
this exaraple, we thus have M = 4 and N = 3, which means that the four signals s1(f), s4(2), s3(8),

~ and s,(7) described in Fig. la do not form a linearly independent set. This is readily confirmed by

noting that =,/ = 5,(t) + s4(1). Moreover. we rote that any of these four signals can be expressed
as & I'near coni'veation of the three basis functions, which is the essence of the Gram-Schmidt
orthogonalization procedure. '
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The expansion coefficients {c,}, that minimize the mean square error, satisfy

o) 4
en= [ alt)alt)dt= [ sin Z fnlt)dt

Hence,
4wt 1 (2, @t 14, =t
e = /(;Sin_fi—wl(t)(h:i/o sm%(lt—§L Sln%(lt
2 —.r’2+2 at |4
= —Zcos— ~ CcOs —
" 4lp w 112
2 2
Similarly,
1wt 14 =t
g = ./0 smzvgxg(t)dt=§/(; sin —4—(11‘.
2 wtd 2 4
= ——¢cos—| =—=(-1-1)=—
T 4 1o © T
and

4 ot
g = in — 3 (t)dt
a = [ sinTa
L a5t 2 7t 1 3, wt 4 ot
= %/0 sin-:(rlf—%./l sillz{(lt+-é—/; sin:l—(lt—%/3 sin%t(lt
= 0

Note that ¢1, ¢ can be found by inspection since sin ’% is even with respect to the z = 2 axis and
11 (t), ¢¥3(t) are odd with respect to the same axis.
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