پاسخ تمرین ۱:

To show that the waveforms $\psi_n(t)$, $n=1,\ldots,3$ are orthogonal we have to prove that

$$\int_{-\infty}^{\infty} \psi_m(t)\psi_n(t)dt = 0, \qquad m \neq n$$

Clearly,

$$c_{12} = \int_{-\infty}^{\infty} \psi_1(t)\psi_2(t)dt = \int_0^4 \psi_1(t)\psi_2(t)dt$$

$$= \int_0^2 \psi_1(t)\psi_2(t)dt + \int_2^4 \psi_1(t)\psi_2(t)dt$$

$$= \frac{1}{4} \int_0^2 dt - \frac{1}{4} \int_2^4 dt = \frac{1}{4} \times 2 - \frac{1}{4} \times (4 - 2)$$

$$= 0$$

Similarly,

$$c_{13} = \int_{-\infty}^{\infty} \psi_1(t)\psi_3(t)dt = \int_0^4 \psi_1(t)\psi_3(t)dt$$
$$= \frac{1}{4} \int_0^1 dt - \frac{1}{4} \int_1^2 dt - \frac{1}{4} \int_2^3 dt + \frac{1}{4} \int_3^4 dt$$
$$= 0$$

and

$$c_{23} = \int_{-\infty}^{\infty} \psi_2(t)\psi_3(t)dt = \int_0^4 \psi_2(t)\psi_3(t)dt$$
$$= \frac{1}{4} \int_0^1 dt - \frac{1}{4} \int_1^2 dt + \frac{1}{4} \int_2^3 dt - \frac{1}{4} \int_3^4 dt$$
$$= 0$$

Thus, the signals $\psi_n(t)$ are orthogonal.

(ب)

We first determine the weighting coefficients

$$x_n = \int_{-\infty}^{\infty} x(t)\psi_n(t)dt, \qquad n = 1, 2, 3$$

$$x_1 = \int_0^4 x(t)\psi_1(t)dt = -\frac{1}{2}\int_0^1 dt + \frac{1}{2}\int_1^2 dt - \frac{1}{2}\int_2^3 dt + \frac{1}{2}\int_3^4 dt = 0$$

$$x_2 = \int_0^4 x(t)\psi_2(t)dt = \frac{1}{2}\int_0^4 x(t)dt = 0$$

$$x_3 = \int_0^4 x(t)\psi_3(t)dt = -\frac{1}{2}\int_0^1 dt - \frac{1}{2}\int_1^2 dt + \frac{1}{2}\int_3^3 dt + \frac{1}{2}\int_3^4 dt = 0$$

As it is observed, x(t) is orthogonal to the signal waveforms $\psi_n(t)$, n = 1, 2, 3 and thus it can not represented as a linear combination of these functions.

پاسخ تمرین ۲:

Consider the signals $s_1(t)$, $s_2(t)$, $s_3(t)$, and $s_4(t)$ shown in Fig. 1a. We wish to use the Gram-Schmidt orthogonalization procedure to find an orthonormal basis for this set of signals.

Step 1 We note that the energy of signal $s_1(t)$ is

$$E_{1} = \int_{0}^{T} s_{1}^{2}(t)dt$$
$$= \int_{0}^{T/3} (1)^{2} dt$$
$$= \frac{T}{3}$$

The first basis function $\phi_1(t)$ is therefore

$$\phi_{1}(t) = \frac{s_{1}(t)}{\sqrt{E_{1}}}$$

$$= \begin{cases} \sqrt{3/T}, & 0 \le t \le T/3 \\ 0 & \text{otherwise} \end{cases}$$

$$s_{1}(t) = \frac{s_{1}(t)}{\sqrt{3/T}} \underbrace{\begin{cases} s_{2}(t) \\ 0 & \frac{2T}{3} \end{cases}}_{s_{3}(t)} \underbrace{\begin{cases} s_{3}(t) \\ 0 & \frac{T}{3} \end{cases}}_{s_{4}(t)} \underbrace{\begin{cases} s_{4}(t) \\ 0 & \frac{T}{3} \end{cases}}_{s_{4}(t)} \underbrace$$

Figure 1

Step 2 Evaluating the projection of $s_2(t)$ onto $\phi_1(t)$, we find that

$$s_{21} = \int_0^T s_2(t)\phi_1(t)dt$$
$$= \int_0^{T/3} (1) \left(\sqrt{\frac{3}{T}}\right) dt$$
$$= \sqrt{\frac{3}{T}}$$

The energy of signal $s_2(t)$ is

$$E_{2} = \int_{0}^{T} s_{2}^{2}(t)$$

$$= \int_{0}^{2T/3} (1)^{2} dt$$

$$= \frac{2T}{3}$$

The second basis function $\phi_2(t)$ is therefore

$$\phi_2(t) = \frac{s_2(t) - s_{21}\phi_1(t)}{\sqrt{E_2 - s_{21}^2}}$$

$$\begin{cases} \sqrt{3/T}, & T/3 \le 2T/3 \\ 0 & \text{otherwise} \end{cases}$$

Step 3 Evaluating the projection of $s_3(t)$ onto $\phi_1(t)$,

$$s_{31} = \int_0^T s_3(t)\phi_1(t)dt$$
$$= 0$$

and the coefficient s_{32} equals

$$s_{32} = \int_0^T s_3(t)\phi_1(t)dt$$
$$= \int_{T/3}^{2T/3} (1) \left(\sqrt{\frac{3}{T}}\right) dt$$
$$= \sqrt{\frac{3}{T}}$$

The corresponding value of the intermediate function $g_i(t)$, with i = 3, is therefore

$$g_3(t) = s_3(t) - s_{31}\phi_1(t) - s_{32}\phi_2(t)$$

$$= \begin{cases} 1, & 2T/3 \le t \le T \\ 0, & \text{elsewhere} \end{cases}$$

Hence, the third basis function $\phi_3(t)$ is

$$\phi_3(t) = \frac{g_3(t)}{\sqrt{\int_0^T g_3^2(t) dt}}$$

$$= \begin{cases} \sqrt{3/T}, & 2T/3 \le t \le T \\ 0, & \text{elsewhere} \end{cases}$$

The orthogonalization process is now complete.

The three basis functions $\phi_1(t)$, $\phi_2(t)$, and $\phi_3(t)$ form an orthonormal set, as shown in Fig. 1b. In this example, we thus have M=4 and N=3, which means that the four signals $s_1(t)$, $s_2(t)$, $s_3(t)$, and $s_4(t)$ described in Fig. 1a do not form a linearly independent set. This is readily confirmed by noting that $s_1(t) = s_1(t) + s_3(t)$. Moreover, we note that any of these four signals can be expressed as a linear combination of the three basis functions, which is the essence of the Gram-Schmidt orthogonalization procedure.

پاسخ تمرین ۳:

The expansion coefficients $\{c_n\}$, that minimize the mean square error, satisfy

$$c_n = \int_{-\infty}^{\infty} x(t)\psi_n(t)dt = \int_0^4 \sin\frac{\pi t}{4}\psi_n(t)dt$$

Hence,

$$c_1 = \int_0^4 \sin\frac{\pi t}{4} \psi_1(t) dt = \frac{1}{2} \int_0^2 \sin\frac{\pi t}{4} dt - \frac{1}{2} \int_2^4 \sin\frac{\pi t}{4} dt$$
$$= -\frac{2}{\pi} \cos\frac{\pi t}{4} \Big|_0^2 + \frac{2}{\pi} \cos\frac{\pi t}{4} \Big|_2^4$$
$$= -\frac{2}{\pi} (0-1) + \frac{2}{\pi} (-1-0) = 0$$

Similarly,

$$c_2 = \int_0^4 \sin\frac{\pi t}{4}\psi_2(t)dt = \frac{1}{2}\int_0^4 \sin\frac{\pi t}{4}dt$$
$$= -\frac{2}{\pi}\cos\frac{\pi t}{4}\Big|_0^4 = -\frac{2}{\pi}(-1-1) = \frac{4}{\pi}$$

and

$$c_3 = \int_0^4 \sin\frac{\pi t}{4} \psi_3(t) dt$$

$$= \frac{1}{2} \int_0^1 \sin\frac{\pi t}{4} dt - \frac{1}{2} \int_1^2 \sin\frac{\pi t}{4} dt + \frac{1}{2} \int_2^3 \sin\frac{\pi t}{4} dt - \frac{1}{2} \int_3^4 \sin\frac{\pi t}{4} dt$$

$$= 0$$

Note that c_1 , c_2 can be found by inspection since $\sin \frac{\pi t}{4}$ is even with respect to the x=2 axis and $\psi_1(t)$, $\psi_3(t)$ are odd with respect to the same axis.

پاسخ تمرین ۴:



