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2.6 SUMMARY

In this chapter, we have developed important representations for LTI systems, both in dis-
crete time and in continuous time. In discrete time we derived a representation of signals
as weighted sums of shifted unit impulses, and we then used this to derive the convolution-
sum representation for the response of a discrete-time LTI system. In continuous time we
derived an analogous representation of continuous-time signals as weighted integrals of
shifted unit impulses, and we used this to derive the convolution integral representation
for continuous-time LTI systems. These representations are extremely important, as they
allow us to compute the response of an LTI system to an arbitrary input in terms of the sys-
tem’s response to a unit impulse. Moreover, in Section 2.3 the convolution sum and integral
provided us with a means of analyzing the properties of LTI systems and, in particular, of
relating LTI system properties, including causality and stability, to corresponding proper-
ties of the unit impulse response. Also, in Section 2.5 we developed an interpretation of
the continuous-time unit impulse and other related singularity functions in terms of their
behavior under convolution. This interpretation is particularly useful in the analysis of LTI
systems.

An important class of continuous-time systems consists of those described by linear
constant-coefficient differential equations. Similarly, in discrete time, linear constant-
coefficient difference equations play an equally important role. In Section 2.4, we exam-
ined simple examples of differential and difference equations and discussed some of the
properties of systems described by these types of equations. In particular, systems de-
scribed by linear constant-coefficient differential and difference equations together with
the condition of initial rest are causal and LTI. In subsequent chapters, we will develop
additional tools that greatly facilitate our ability to analyze such systems.

Chapter 2 Problems

The first section of problems belongs to the basic category, and the answers are pro-
vided in the back of the book. The remaining three sections contain problems belonging
to the basic, advanced, and extension categories, respectively.

Extension problems introduce applications, concepts, or methods beyond those pre-
sented in the text.

BASIC PROBLEMS WITH ANSWERS

2.1. Let
x[n] = 8[n] +26[n—1]1—6[n—3] and h[n] = 28[n+ 1]+ 26[n — 1).

Compute and plot each of the following convolutions:
(@) yiln} = x[n] * hln] (b) y2[n] = x[n + 2] * h[n]
(©) yslnl = x[n]*hln + 2]
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2.2

Consider the signal
1 n—1
h[n] = (§> {uln + 3] — u[n — 10]}.

Express A and B in terms of n so that the following equation holds:

hin — K] = )"k, A=<k=B
0, elsewhere

2.3.

24.

Consider an input x[n] and a unit impulse response h[n] given by

2
hln] = uln + 2].

1 n—2
x[n] = (—) uln — 2],

Determine and plot the output y[n] = x[n] * h[n].
Compute and plot y[n] = x[n] * h[n], where

, 3=n=28
0, otherwise

|1, 4=n=15
hin] = [0, otherwise

’

x[n] = [

Chap. 2

2.5.

Let

, 0=n=<=9

x[n] = , 0=n=<N
0, elsewhere

0, elsewhere

b

and h[n] = {

where N = 9 is an integer. Determine the value of N, given that y[n] = x[n] * h[n]

and

yl4l =5, y[14] = 0.

2.6.

2.7.

Compute and plot the convolution y[n] = x[n] * h[n], where

x[n] = (%)_ u[—n—1]1 and h[n] = u[n - 1]

A linear system S has the relationship

oxL

yinl = > x[klgln — 2]

k=—x

between its input x[#n] and its output y[n], where g[n] = u[n] — u[n — 4].
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(a) Determine y[n] when x[n] = é[n — 1].
(b) Determine y[n] when x[n] = 6[n — 2].
(¢) Is SLTI?

(d) Determine y[n] when x[n] = u[n].

2.8. Determine and sketch the convolution of the following two signals:

t+1, 0=tr=1
x()y=<¢2—-1t 1<r=2,
0, elsewhere
h(t) = 6@t +2)+ 286 + 1).
2.9, Let
h(t) = e®u(—t +4) + e 2 u(r — 5).

Determine A and B such that

e 2D r <A
h(t—1) =<0, A<T<RB.

"M B<rt
2.10. Suppose that

(1, o0=r=1
x(1) = { 0, elsewhere
and h(t) = x(t/a), where 0 < a = 1.
(a) Determine and sketch y(¢) = x(¢) * h(z).
(b) If dy(t)/dt contains only three discontinuities, what is the value of «?
2.11. Let

x(t) = u(t —3)—u(—5) and h@) = e Nu().

(a) Compute y(z) = x(t) * h(z).
(b) Compute g(¢) = (dx(t)/dt) * h(t).
(c¢) How is g(?) related to y(#)?

2.12. Let

y(t) = e'ut)x > 8(t — 3k).

k=—o

Show that y(t) = Ae~ ' for 0 = ¢ < 3, and determine the value of A.
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2.13.
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Consider a discrete-time system S} with impulse response
1 n
hln] = (§> ufn).

(a) Find the integer A such that 2[n] — Ah[n — 1] = &[n].
(b) Using the result from part (a), determine the impulse response g[n] of an LTI
system S, which is the inverse system of ;.

2.14.

2.15.

Which of the following impulse responses correspond(s) to stable LTI systems?
@) h() = e U201 (b) ha(t) = e ' cos(2t)u(t)

Which of the following impulse responses correspond(s) to stable LTI systems?
(a) hy[n] = ncos(fFn)uln] (b) hy[n] = 3"u[—n + 10]

2.16.

For each of the following statements, determine whether it is true or false:

(@) If x[n] = 0 for n < N, and h[n] = O for n < N, then x[n] * h[n] = O for
n<N; + N,.

(b) If y[n] = x[n] * h[n], then y[n — 1] = x[n — 1] * h[n — 1].

(¢) If y(r) = x(2) * h(1), then y(—1) = x(—t)* h(—t).

(d) If x(r) = O fort > T, and h(¢t) = O for t > T,, then x(¢) * h(t) = O for t >
T, +T>.

2.17.

Consider an LTI system whose input x(¢) and output y(¢) are related by the differ-
ential equation

%y(r) +4y(t) = x(¢). (P2.17-1)

The system also satisfies the condition of initial rest.

(@) If x(¢) = e~'+31y(r), what is y()?

(b) Note that Re{x(¢)} will satisfy eq. (P2.17-1) with Re{y(r)}. Determine the out-
put y(¢) of the LTI system if

x(t) = e "cos(3t)u(r).

2.18.

2.19.

Consider a causal LTI system whose input x[z] and output y[n] are related by the
difference equation

yln] = iy[n — 1] + x[n].

Determine y[n] if x[n] = &[n — 1].

Consider the cascade of the following two systems S; and S,, as depicted in Figure
P2.19:

X[N] —] S, W[n]ﬁ‘ S, —> y[n]

Figure P2.19
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S : causal LTI,
1
wln] = Ew[n — 1] + x[n];

S> : causal LTI,
y[n] = ay[n — 1] + Bw[n].

The difference equation relating x[n] and y[#] is:
1 3
yln] = —g)’[n =2]+ Zy[n — 1] + x[n].

(a) Determine « and 3.
(b) Show the impulse response of the cascade connection of S| and S».

2.20. Evaluate the following integrals:
(a) f_xx uo(t) cos(r) dt
(b) [ sin(2me)8(t + 3)dt
(c) f_55 u (1 — mycosQmrr)dr

BASIC PROBLEMS

2.21. Compute the convolution y[n] = x[n] * h[n] of the following pairs of signals:

x[n] = a"u[n], i
(@) hln] = B"u[nl) «*p
(b) xIn] = h[n] = «"uln]
(c) x[n] = (—3)"uln— 4]

hln] = 4"u[2 — n]
(d) x[n] and h[n] are as in Figure P2.21.

x[n] h(n]

-1 012345 n 01234567 891011213141516 n

Figure P2.21

2.22. For each of the following pairs of waveforms, use the convolution integral to find the
response y(t) of the LTI system with impulse response A(#) to the input x(¢). Sketch
your results.

1 = e “ult : )
(a) th) _ 2_ B’l;((t)) } (Do this both when a # B and whena = 3.)
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(b) x(t) = u(t) — 2u(t —2) + u(t — 5)
h(t) = e*u(l — 1)

(c) x(t) and Ah(?) are as in Figure P2.22(a).

(d) x(t) and A(r) are as in Figure P2.22(b).

(e) x(t) and h(¢) are as in Figure P2.22(c).

x(t) h(t)

One period of sin mt

© Figure P2.22

2.23. Let h(t) be the triangular pulse shown in Figure P2.23(a), and let x(¢) be the impulse
train depicted in Figure P2.23(b). That is,

x(t) = > 8(t—KI).
k=—=

Determine and sketch y(r) = x(¢) * h(¢) for the following values of T
@ T =4 b)) T =2 (¢) T =312 dT=1
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— 1 t
@
x(t)
AEEREEEREE
—2T -T 0 T 2T aT t
() Figure P2.23

2.24. Consider the cascade interconnection of three causal LTI systems, illustrated in Fig-
ure P2.24(a). The impulse response h;[n] is

ho[n] = uln] — uln — 2],

and the overall impulse response is as shown in Figure P2.24(b).

Y

X[N] == h;[n] h,[n] 1 hy[n] > y[n]

-101234567 n

(b) Figure P2.24

(a) Find the impulse response h;[n].
(b) Find the response of the overall system to the input

x[n] = 6[n] — 6[n —1].
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2.25. Let the signal
yln] = x[n] * h[n],

where

x[n] = 3"u[-n—-1]1+ (%) u[n)

[ ] 11 n [ ]

(a) Determine y[n] without utilizing the distributive property of convolution.
(b) Determine y[n] utilizing the distributive property of convolution.

2.26. Consider the evaluation of

vlnl = xi[n] * xz[n] * x3[n],

where xi[n] = (0.5)"u[n], x2[n] = u[n + 3], and x3[n] = é[n] — 6[n — 1].
(a) Evaluate the convolution x;[n] * x,[n].

(b) Convolve the result of part (a) with x3[n] in order to evaluate y[n].

(c¢) Evaluate the convolution x,[n] * x3[n].

(d) Convolve the result of part (c) with x;[rn] in order to evaluate y[n].

2.27. We define the area under a continuous-time signal v(t) as

+
A, = f v(t)dt.

Show that if y(t) = x(¢) * h(t), then
A, = A A

2.28. The following are the impulse responses of discrete-time LTI systems. Determine
whether each system is causal and/or stable. Justify your answers.
Ijg) hln] = (3)"uln]
(b) Alnl = (0.8)"uln + 2]
(¢) h[n] = (3)"ul—n]
(d) hln] = (5)"u[3 — n]
() Aln] = (—H"uln] + (1.01)"uln — 1]
(®) hln] = (—=3)"uln] + (1.01)"u[1 — n]
(®) hln] = n(3)"uln — 1]
2.29. The following are the impulse responses of continuous-time LTI systems. Determine
whether each system is causal and/or stable. Justify your answers.
(@) h(t) = e *u(t —2)
(b) A(t) = e %u@3 -1
(¢) n(t) = e “ut +50)
d) A = eu(—1-1)
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2.30.

2.31.

2.32.

(©) h(t) = ™ol
(B) h(1) = te”"u(t)

(g) h(t) — (2eft — 6(14100)/100)u(t)
Consider the first-order difference equation
ylnl +2y[n — 1] = x[n].

Assuming the condition of initial rest (i.e., if x[n] = 0 for n < ng, then y[n] = O for
n < ny), find the impulse response of a system whose input and output are related by
this difference equation. You may solve the problem by rearranging the difference
equation so as to express y[#] in terms of y[n — 1] and x[#] and generating the values
of y[0], y[+1], y[+2],... in that order.

Consider the LTI system initially at rest and described by the difference equation
yin] + 2y[n — 1] = x[n] + 2x[n — 2].

Find the response of this system to the input depicted in Figure P2.31 by solving the
difference equation recursively.

x[n]
3

2 2
1 1
-2-1012 34 n  Figure P2.31
Consider the difference equation
yinl = 2yin = 11 = xinl, (P2.32-1)

and suppose that

x[n] = (%) ul[n]. (P2.32-2)

Assume that the solution y[n] consists of the sum of a particular solution y,[n] to
eq. (P2.32-1) and a homogeneous solution y,[n] satisfying the equation

1
yuln] = syaln =11 = 0.
(a) Verify that the homogeneous solution is given by

yaln] = A(%)

(b) Let us consider obtaining a particular solution y,[n] such that

1V
yplnl — %yp[n - 11 = (3) ufn].
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By assuming that y,[n] is of the form B(%)” for n = 0, and substituting this in
the above difference equation, determine the value of B.

(¢) Suppose that the LTI system described by eq. (P2.32—1) and initially at rest has
as its input the signal specified by eq. (P2.32-2). Since x[n] = 0 forn <0, we
have that y[n] = 0 for n < 0. Also, from parts (a) and (b) we have that y[n]

has the form
1 n 1 H
y[n] = A(E) + B(§>

forn = 0. In order to solve for the unknown constant A, we must specify a value
for y[n] for some n = 0. Use the condition of initial rest and eqs. (P2.32-1)
and (P2.32-2) to determine y[0]. From this value determine the constant A. The
result of this calculation yields the solution to the difference equation (P2.32-1)
under the condition of initial rest, when the input is given by eq. (P2.32-2).

2.33. Consider a system whose input x(7) and output y(¢) satisfy the first-order differential
equation

d%it) + 2y(t) = x(1). (P2.33-1)
The system also satisfies the condition of initial rest.
(a) (i) Determine the system output y;(¢) when the input is x,(t) = e u(?).
(ii) Determine the system output y,(f) when the input is x,(¢) = e*u(t).
(iii) Determine the system output y3(#) when the input is x3(¢) = aedu(r) +
Be?u(t), where a and B are real numbers. Show that y3(r) = ay,(f) +
ByaA2).
(iv) Now let x;(#) and x,(?) be arbitrary signals such that

x1(t) =0, forr <1,
X)) =0, fort <t,.

Letting y;(¢) be the system output for input x (), y»(¢) be the system output

for input x,(¢), and y3(t) be the system output for x3(t) = ax(t) + B x,(1),
show that

y3() = ay(t) + By2).

We may therefore conclude that the system under consideration is linear.
(b) (i) Determine the system output y,(r) when the input is x;(f) = Keu(t).
(i) Determine the system output y,(f) when the input is x»(f) = Ke2~T)
u(t — T). Show that y,(t) = y,(r — T).
(i) Now let x;(7) be an arbitrary signal such that x;(r) = 0 for t < t,. Letting
y1(2) be the system output for input x,(r) and y,(¢) be the system output
for x,(t) = x((t — T), show that

() = i =T).
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2.34.

2.35.

2.36.

We may therefore conclude that the system under consideration is time
invariant. In conjunction with the result derived in part (a), we conclude
that the given system is LTIL. Since this system satisfies the condition of
initial rest, it is causal as well.

The initial rest assumption corresponds to a zero-valued auxiliary condition being

imposed at a time determined in accordance with the input signal. In this problem

we show that if the auxiliary condition used is nonzero or if it is always applied at a

fixed time (regardless of the input signal) the corresponding system cannot be LTI

Consider a system whose input x(z) and output y(¢) satisfy the first-order differential

equation (P2.33-1).

(a) Given the auxiliary condition y(1) = 1, use a counterexample to show that the
system is not linear.

(b) Given the auxiliary condition y(1) = 1, use a counterexample to show that the
system is not time invariant.

(¢) Given the auxiliary condition y(1) = 1, show that the system is incrementally
linear.

(d) Given the auxiliary condition y(1) = 0, show that the system is linear but not
time invariant.

(e) Given the auxiliary condition y(0) + y(4) = 0, show that the system is linear
but not time invariant.

In the previous problem we saw that application of an auxiliary condition at a fixed
time (regardless of the input signal) leads to the corresponding system being not
time-invariant. In this problem, we explore the effect of fixed auxiliary conditions on
the causality of a system. Consider a system whose input x(¢) and output y(¢) satisfy
the first-order differential equation (P2.33—-1). Assume that the auxiliary condition
associated with the differential equation is y(0) = 0. Determine the output of the
system for each of the following two inputs:

(a) x;(¢) = 0, forallr

(b) xa(r) = {(1’ s

Observe that if y;(¢) is the output for input x;(¢) and y,(¢) is the output for input
x(1), then y(¢) and y,(¢) are not identical for ¢t < —1, even though x(¢) and x,(¢)

are identical for # < —1. Use this observation as the basis of an argument to conclude
that the given system is not causal.

Consider a discrete-time system whose input x[n] and output y[n] are related by

1
yln] = (E)y[n — 1] + x[n].

(a) Show that if this system satisfies the condition of initial rest (i.e., if x[n] = 0
for n < ny, then y[n] = 0 for n < ng), then it is linear and time invariant.

(b) Show that if this system does not satisfy the condition of initial rest, but instead
uses the auxiliary condition y[0] = 0, it is not causal. [Hint: Use an approach
similar to that used in Problem 2.35.]
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2.37. Consider a system whose input and output are related by the first-order differential
equation (P2.33-1). Assume that the system satisfies the condition of final rest [i. e.,
if x(1) = O fort > 1y, then y(t) = O for ¢ > #y]. Show that this system is not causal.
[Hint: Consider two inputs to the system, x| () = 0 and x,(t) = €'(u(t) — u(t — 1)),
which result in outputs y,(¢) and y,(?), respectively. Then show that y,(t) # y.(r)
forr < 0.]

2.38. Draw block diagram representations for causal LTI systems described by the fol-
lowing difference equations:
(@) ylnl = {yln = 11+ 3x[n]
(b) y[n] = {yln — 1] + x[n — 1]

2.39. Draw block diagram representations for causal LTI systems described by the fol-
lowing differential equations:

@) () = —(3)dy(0)dt + 4x(t)
(b) dy(t)/dt + 3y(t) = x(1)

ADVANCED PROBLEMS

2.40. (a) Consider an LTI system with input and output related through the equation
t
y(1) = f e ""Tx(t = 2)dr.

What is the impulse response A(t) for this system?
(b) Determine the response of the system when the input x(¢) is as shown in Figure
P2.40.

-1 2 t  Figure P2.40

2.41. Consider the signal
x[n] = a"u[n].

(a) Sketch the signal g[n] = x[n] — ax[n — 1].
(b) Use the result of part (a) in conjunction with properties of convolution in order
to determine a sequence h[n] such that

x[n] * h[n] = (%) {u[n + 2] — u[n — 21}.

2.42. Suppose that the signal
x(t) = u(t + 0.5) — u(t — 0.5)
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is convolved with the signal

h(t) = &/,
(a) Determine a value of wy which ensures that

y(0) =0,
where y(t) = x(2) * h(z).
(b) Is your answer to the previous part unique?

2.43. One of the important properties of convolution, in both continuous and discrete time,
is the associativity property. In this problem, we will check and illustrate this prop-

erty.
(a) Prove the equality
[x(r) * h(D)] * g(r) = x(1) * [A(1) * g(1)] (P2.43-1)
by showing that both sides of eq. (P2.43-1) equal
+0o0 +x
J J x(T)h(o)g(t — 7 — o)drdo.

— o0 — 00

(b) Consider two LTI systems with the unit sample responses 4i[n] and h;[n]

shown in Figure P2.43(a). These two systems are cascaded as shown in Figure
P2.43(b). Let x[n] = u[n].

, hyln] = (-} \"uln]

o~ w

[ )
[ )
O ———

N~ Gu— —

N @ &=

hy[n] = uln] +15u[n—1]

nlw
— —————

win]

x[n] == hy[n]

ho[n] > y[n|

\

Figure P2.43
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(c)

2.44. (a)

(b)

(0

(d)
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(1) Compute y[n] by first computing w[n] = x[n]* h;[n] and then computing
ylnl = win} * hy[n]; that is, y[n] = [x[n] * hi[n]] * hy[n].

(1)) Now find y[n] by first convolving h;[n] and h;[n] to obtain g[n] =
hi[n] * hy[n] and then convolving x[n] with g[n] to obtain y[n] =
x[n] * [hy[n] * hy[n]].

The answers to (i) and (ii) should be identical, illustrating the associativity prop-

erty of discrete-time convolution.

Consider the cascade of two LTI systems as in Figure P2.43(b), where in this

case

hy[n] = sin8n
and

hy[n] = a"uln], la| <1,
and where the input is

x[n] = 8[n] — ad[n — 1].

Determine the output y[n]. (Hint: The use of the associative and commutative
properties of convolution should greatly facilitate the solution.)

If

x(t) =0, [f{| >T,
and

h(t) = 0, [t| > T,
then

x(t)* h(t) = 0,

l|>T3

for some positive number T3. Express T3 in terms of T and T,.

A discrete-time LTI system has input x[n], impulse response A[n], and output

yln]. If A[n] is known to be zero everywhere outside the interval Ny = n <

N; and x[n] is known to be zero everywhere outside the interval N, = n <

N3, then the output y[n] is constrained to be zero everywhere, except on some

interval Ny = n < Ns.

(1) Determine N4 and N5 in terms of Ny, Ny, N, and N5.

(i1) If the interval Ny = n =< N, is of length M, N = n = Nj is of length
M., and Ny = n = Ns is of length M, express M, in terms of M,
and M,.

Consider a discrete-time LTI system with the property that if the input x[n] = 0

for all n = 10, then the output y[n] = 0 for all n = 15. What condition must

h[n], the impulse response of the system, satisfy for this to be true?

Consider an LTI system with impulse response in Figure P2.44. Over what in-

terval must we know x(#) in order to determine y(0)?
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1+ 11

o 6 t Figure P2.44

2.45. (a) Show that if the response of an LTI system to x(¢) is the output y(f), then the
response of the system to

_dx(@)
- dr

x'(1)

is ¥'(#). Do this problem in three different ways:
(i) Directly from the properties of linearity and time invariance and the fact
that

X'(t) = 1111-% &%t__h)

(i) By differentiating the convolution integral.
(ii1) By examining the system in Figure P2.45.

X(t) ——— Uy (t) -1 h{t) }— ¥t

Figure P2.45

(b) Demonstrate the validity of the following relationships:
1) y'(t) = x() = h'(1)
(i) y(0) = ([ x(m)dr) k') = [L[x'(1) * h(r)ldT = x'(0) * (|| h(r)d7)
[Hint: These are easily done using block diagrams as in (iii) of part (a) and the
fact that u () * u_,(t) = 6(t).]

(c) An LTI system has the response y(f) = sinwyt to input x(tf) = e >'u(t). Use
the result of part (a) to aid in determining the impulse response of this system.

(d) Let s(¢) be the unit step response of a continuous-time LTI system. Use part (b)
to deduce that the response y(¢) to the input x(#) is

1) = I ’ x'(7) * s(t — 7)dT. (P2.45-1)

=®x

Show also that

x(t) = J ’ X' (Du(t — 7)dT. (P2.45-2)

—x
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(e) Useeq.(P2.45-1)to determine the response of an LTI system with step response
s() = (e7¥ =272 + Du(t)
to the input x(¢) = e'u(z).

(f) Let s[n] be the unit step response of a discrete-time LTI system. What are the
discrete-time counterparts of eqs. (P2.45-1) and (P2.45-2)?

2.46. Consider an LTI system S and a signal x(z) = 2e 3yt — 1. If
x(t) — y(1)
and

dx(t)
dt

— =3y(1) + e 2u(r),

determine the impulse response h(t) of S.

2.47. We are given a certain linear time-invariant system with impulse response h(t). We
are told that when the input is x((¢) the output is yo(¢), which is sketched in Figure
P2.47. We are then given the following set of inputs to linear time-invariant systems
with the indicated impulse responses:

Input x(t) Impulse response h(t)
(@) x(1) = 2xo(1) h(t) = hy(t)
(b) x(1) = xo(t) — xo(t = 2) h(r) = ho(?)
(©) x(t) = xp(t —2) h(t) = ho(t + 1)
(d) x(#) = xo(—1) h(t) = ho(t)
(€) x(1) = xo(—1) h(r) = ho(—1)
® x() = xp(0) h(t) = hy(t)

[Here x;,(¢) and hy(r) denote the first derivatives of xo(¢) and hg(7), respectively.]

Yo(t)

0 2 t  Figure P2.47

In each of these cases, determine whether or not we have enough information
to determine the output y(#) when the input is x(#) and the system has impulse re-
sponse A(?). If it is possible to determine y(¢), provide an accurate sketch of it with
numerical values clearly indicated on the graph.
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2.48.

2.49.

Determine whether each of the following statements concerning LTI systems is true

or false. Justify your answers.

(a) If h(z) is the impulse response of an LTI system and A(?) is periodic and nonzero,
the system is unstable.

(b) The inverse of a causal LTI system is always causal.

(¢) If|h[n]] = K for each n, where K is a given number, then the LTI system with
h[n] as its impulse response is stable.

(d) If a discrete-time LTI system has an impulse response A[n] of finite duration,
the system is stable.

(e) If an LTI system is causal, it is stable.

(f) The cascade of a noncausal LTI system with a causal one is necessarily non-
causal.

(g) A continuous-time LTI system is stable if and only if its step response s(z) is
absolutely integrable—that is, if and only if

f "5l dr < .

(h) A discrete-time LTI system is causal if and only if its step response s[n] is zero
for n < 0.

In the text, we showed that if h[n] is absolutely summable, i.e., if

00

> Jhlk]| < o,

k=—=

then the LTI system with impulse response /[n] is stable. This means that absolute
summability is a sufficient condition for stability. In this problem, we shall show
that it is also a necessary condition. Consider an LTI system with impulse response
h[n] that is not absolutely summable; that is,

S |hik]| = .

k=—=

(a) Suppose that the input to this system is

0, ifh[-n] =0
k= Mol pf—n) # 0

Does this input signal represent a bounded input? If so, what is the smallest
number B such that

|x[n]] = B for all n?
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(b) Calculate the output at n = O for this particular choice of input. Does the re-
sult prove the contention that absolute summability is a necessary condition for
stability?

(¢) In a similar fashion, show that a continuous-time LTI system is stable if and
only if its impulse response is absolutely integrable.

2.50. Consider the cascade of two systems shown in Figure P2.50. The first system, A, is

known to be LTI The second system, B, is known to be the inverse of system A. Let
y1(?) denote the response of system A to x,(¢), and let y,(¢) denote the response of
system A to x;(1).

LTI
y(t)
X(t) =——3-1 System > Syséem — X(t)
A Figure P2.50

2.51.

(a) Whatis the response of system B to the input ay,(t) + by,(t), where a and b are
constants?
(b) What is the response of system B to the input y,(z — 7)?

In the text, we saw that the overall input-output relationship of the cascade of two

LTI systems does not depend on the order in which they are cascaded. This fact,

known as the commutativity property, depends on both the linearity and the time

invariance of both systems. In this problem, we illustrate the point.

(a) Consider two discrete-time systems A and B, where system A is an LTI system
with unit sample response A[n] = (1/2)"u[n]. System B, on the other hand, is
linear but time varying. Specifically, if the input to system B is w[n], its output
is

z[n] = nwiln].

Show that the commutativity property does not hold for these two systems
by computing the impulse responses of the cascade combinations in Figures
P2.51(a) and P2.51(b), respectively.

X[n] —p-|System Systeml—5 y[n]  x[n] =——|System > Systemp— y[n]
A B B A

Y

Figure P2.51

(b) Suppose that we replace system B in each of the interconnected systems of
Figure P2.51 by the system with the following relationship between its input
wln] and output z[n]:

z[n] = win] + 2.

Repeat the calculations of part (a) in this case.
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2.52. Consider a discrete-time LTI system with unit sample response

h[n] = (n + Dauln],

where |a| < 1. Show that the step response of this system is

1 o " o n
s[n] = {(a Y - o= ])2a + - 1)(n+ Da ]u[n].

(Hint: Note that

2.53. (a)

(b)

N N+1

> (k+ Da* = Za )

k=0

Consider the homogeneous differential equation

Yodhya .
Z aq—o= = 0. (P2.53-1)

Show that if s is a solution of the equation

N
p(s) = > aist =0, (P2.53-2)
k=0

then Ae*’ is a solution of eq. (P2.53-1), where A is an arbitrary complex con-
stant.

The polynomial p(s) in eq. (P2.53-2) can be factored in terms of its roots
St,..., 8 as

ps) = an(s — s1)7'(s — )72 ... (s — s,)7",

where the s; are the distinct solutions of eq. (P2.53-2) and the o; are their
multiplicities—that is, the number of times each root appears as a solution of
the equation. Note that

o +oy+...+0, =N.

In general, if o; > 1, then not only is Ae*’ a solution of eq. (P2.53-1),
but so is At/e*’, as long as j is an integer greater than or equal to zero and less
than or equal to o; — 1. To illustrate this, show that if o; = 2, then Ate’’ is a
solution of eq. (P2.53—1). [Hint: Show that if s is an arbitrary complex number,
then

(9)

= Ap(s)re’ + ALY p

i d*(Ate™) o]

k
= dt
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2.54. (a)

(b)
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Thus, the most general solution of eq. (P2.53-1) is

rooi—1

Z Z A,’jtje‘s'v[,

i=1j=0

where the A;; are arbitrary complex constants.

Solve the following homogeneous differential equations with the specified aux-
iliary conditions:

(1) (lzy(t) 3(!\(1 + 2},([) _ 0’ V(O) — O, Y’(O) =2

dr? dt

(11) d- \(l‘) + 3(1\(1) _+_2y(’) _ 0 y(O) ’ y!(o) _
(iii) ; o + 390 1 2y(r) = 0, y(0) = 0, y'(0) =0

dr

(iv) S0 420 4y = 0, y(0) = 1, y'(0) =

dr? dt

( ) dd:(J) (i‘[‘,(tj _ d:/([,) V(T) _ 0 y(()) ’ y'(O) — 1’ y”(O) - _

(vi) LA+ 280 4+ 5y(1) = 0, y(©0) = 1, Y'(0) = |

Con51der the homogeneous difference equation
N
> apyln—k =0, (P2.54-1)
k=0

Show that if z, is a solution of the equation

N
> az k=0, (P2.54-2)
k=0

then Az is a solution of eq. (P2.54—1), where A is an arbitrary constant.

As it is more convenient for the moment to work with polynomials that have
only nonnegative powers of z, consider the equation obtained by multiplying
both sides of eq. (P2.54-2) by z:

N
p) = > @ k=0 (P2.54-3)

The polynomial p(z) can be factored as

p(2) = ap(z—z))" ... (2 — )",

where the z), ..., z, are the distinct roots of p(z).
Show that if y[n] = nz"~!, then

N

d < n— n—N-—
> ayln—k = Z( ) 1N +(n— N)p(z)z" V.
k=0 <

Use this fact to show that if o; = 2, then both Az} and an?“ are solutions of
eq. (P2.54-1), where A and B are arbitrary complex constants. More generally,
one can use this same procedure to show that if o; > 1, then
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2.55.

n!

n—r

ri(n — r)!

is a solution of eq. (P2.54-1) forr = 0, 1,...,0; — 1.7
(c) Solve the following homogeneous difference equations with the specified aux-

iliary conditions:

() ylnl+ 3yln— 11+ gy[n—2] = 0; y[0] = 1, y[-1] = —6

(i) y[n]l = 2yln — 11+ y[n = 2] = 0; y[0] = 1, y[1] =0

(iii) y[n] —2y[n — 1] + y[n = 2] = 0; y[0] = 1, y[10] = 21

(iv) yinl = Lyln— 11+ Lyln =21 = 0; y[0] = 0, y[~1] = I
In the text we described one method for solving linear constant-coefficient difference
equations, and another method for doing this was illustrated in Problem 2.30. If the
assumption of initial rest is made so that the system described by the difference
equation is LTI and causal, then, in principle, we can determine the unit impulse
response h[n] using either of these procedures. In Chapter 5, we describe another
method that allows us to determine h[n] in a more elegant way. In this problem we
describe yet another approach, which basically shows that h[n] can be determined

by solving the homogeneous equation with appropriate initial conditions.
(a) Consider the system initially at rest and described by the equation

y[n] — %y[n — 1] = x[n]. (P2.55-1)

Assuming that x[n] = &8{n], what is y[0]? What equation does h[n] satisfy
for n = 1, and with what auxiliary condition? Solve this equation to obtain
a closed-form expression for A[n].

(b) Consider next the LTI system initially at rest and described by the difference
equation

y[n] — %y[n — 1] = x[n] + 2x[n — 1]. (P2.35-2)

This system is depicted in Figure P2.55(a) as a cascade of two LTI systems that
are initially at rest. Because of the properties of LTI systems, we can reverse
the order of the systems in the cascade to obtain an alternative representation
of the same overall system, as illustrated in Figure P2.55(b). From this fact,
use the result of part (a) to determine the impulse response for the system de-
scribed by eq. (P2.55-2).

(c) Consider again the system of part (a), with k[n] denoting its impulse response.
Show, by verifying that eq. (P2.55-3) satisfies the difference equation (P2.55—
1), that the response y[n] to an arbitrary input x[n] is in fact given by the con-
volution sum

ynl = > h[n— mlx{m] (P2.55-3)

m=—=

"Here, we are using factorial notation—thatis, k! = k(k — 1)(k — 2)...(2)(1), where0!isdefinedtobe 1.
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X[N] == z[n] = x[n] + 2x[n—1] z[n]: y[n] — lzy[n~1] =2z[n] |r—y[n]
@)
: win]

X[N] ==~ w[n] — zw[n—1] = x[n] > y[n] = wln] + 2w[n—1] e y[N]
(b)

Figure P2.55

(d) Consider the LTI system initially at rest and described by the difference equa-
tion

N
> agyln — k] = x[nl. (P2.55-4)
k=0

Assuming that ag # 0, what is y[0] if x[n] = 6[n]? Using this result, specify
the homogeneous equation and initial conditions that the impulse response of
the system must satisfy.

Consider next the causal LTI system described by the difference equation

N M
> agyln — k1l = > byx[n — kl. (P2.55-5)
k=0 k=0

Express the impulse response of this system in terms of that for the LTI system
described by eq. (P2.55-4).

(e) There is an alternative method for determining the impulse response of the LTI
system described by eq. (P2.55-5). Specifically, given the condition of initial
rest, i.e., in this case, y[—N] = y[-N + 1] = ... = y[—1] = 0, solve eq.
(P2.55-5) recursively when x[n] = 6[n] in order to determine y[0], ..., y[M].
What equation does h[n] satisfy for n = M? What are the appropriate initial
conditions for this equation?

(f) Using either of the methods outlined in parts (d) and (e), find the impulse re-
sponses of the causal LTI systems described by the following equations:

(1) yln] — yln = 2] = x[n]

(i) y[n] = yln = 2] = x[n] + 2x[n — 1]

(1) y[n] — y[n — 2] = 2x[n] — 3x[n — 4]

(iv) yInl = (V3/2)y[n = 1] + 3yln =2} = xn]

2.56. In this problem, we consider a procedure that is the continuous-time counterpart of
the technique developed in Problem 2.55. Again, we will see that the problem of
determining the impulse response h(¢) for > 0 for an LTI system initially at rest
and described by a linear constant-coefficient differential equation reduces to the
problem of solving the homogeneous equation with appropriate initial conditions.



Chap. 2

(a)

Problems 159

Consider the LTI system initially at rest and described by the differential equa-
tion

% + 2y(¢) = x(). (P2.56-1)

Suppose that x(#) = 8(¢). In order to determine the value of y(z) immediately
after the application of the unit impulse, consider integrating eq. (P2.56—1) from
t =0"tot = 0" (i.e., from “just before” to “just after” the application of the
impulse). This yields

0* 0+
y(0*) — y(07) + 2[ y(rydr = J o(rydr =1. (P2.56-2)
0- 0-

Since the system is initially at rest and x(¢) = Ofort < 0, y(0~) = 0. To satisfy
eq. (P2.56-2) we must have y(0*) = 1. Thus, since x(r) = 0 for t > 0, the
impulse response of our system is the solution of the homogeneous differential
equation

dy(t) _

with initial condition

y(0") = L

Solve this differential equation to obtain the impulse response A(¢) for the sys-
tem. Check your result by showing that

+ 20
y(t) = J h(t — T)x(7)dr

satisfies eq. (P2.56-1) for any input x(z).

(b) To generalize the preceding argument, consider an LTI system initially at rest

and described by the differential equation

N dkyn
Z Ak dtk
k=0

= x(1) (P2.56-3)

with x(¢) = 6(¢). Assume the condition of initial rest, which, since x(z) = 0 for
t < 0, implies that

o _dy _dvly
Integrate both sides of eq. (P2.56-3) once from r = 0~ to ¢t = 0, and use
eq. (P2.56—4) and an argument similar to that used in part (a) to show that the
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resulting equation is satisfied with

d dN 2
307 = ZoH = .. = 50 =0 (P256-5)
and
dV 1y |
“0T) = — P2.56-5b
dtN-l (0 ) aN- ( )

Consequently, the system’s impulse response for t > 0 can be obtained by solv-
ing the homogeneous equation

ﬁ kd"v(r) _

with initial conditions given by egs. (P2.56-5).
(c) Consider now the causal LTI system described by the differential equation

N k k
> kd X0 z i) (P2.56-6)

k
k=0 dt

Express the impulse response of this system in terms of that for the system of
part (b). (Hint: Examine Figure P2.56.)

N dwit) w(t) M dwit)
D = x(t) > yit) = I by

— > Y0
0 dt

Figure P2.56

(d) Apply the procedures outlined in parts (b) and (c) to find the impulse responses
for the LTI systems initially at rest and described by the following differential
equations

i & \(r) + 34““) +2y(t) = x(1)

( ) (/ \(1) +2d\(t) +2y(t) . x(t)

(e) Use the results of parts (b) and (c) to deduce that if M = N in eq. (P2.56-6),
then the impulse response A(t) will contain singularity terms concentrated at
t = 0. In particular, A(¢) will contain a term of the form

M-N
> au),
r=0

where the «, are constants and the u,(¢) are the singularity functions defined in
Section 2.5.

(f) Find the impulse responses of the causal LTI systems described by the following
differential equations:

(i) 90+ 2y(r) = 390 + x(r)

(ll) (1([_\’§1) + Sd_l\ht) + 6y(f) d 1;3!) + 2(1 x(r) +411\(r) + 3X([)
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2.57.

2.58.

Consider a causal LTI system S whose input x[#] and output y[n] are related by the
difference equation

yln] = —ayln — 1] + box[n] + by x[n — 1].

(a) Verify that S may be considered a cascade connection of two causal LTI systems
S| and S with the following input-output relationship:

Sy :yiln] = box([n] + byx;[n — 1],
S> : yaln] = —ay:[n — 1] + xz[n].

(b) Draw a block diagram representation of S.

(¢) Draw a block diagram representation of S».

(d) Draw a block diagram representation of S as a cascade connection of the block
diagram representation of S; followed by the block diagram representation
of Sz.

(e) Draw a block diagram representation of S as a cascade connection of the block
diagram representation of S, followed by the block diagram representation
of S |-

(f) Show that the two unit-delay elements in the block diagram representation of S
obtained in part (e) may be collapsed into one unit-delay element. The result-
ing block diagram is referred to as a Direct Form Il realization of S, while the
block diagrams obtained in parts (d) and (e) are referred to as Direct Form I
realizations of S.

Consider a causal LTI system S whose input x[n] and output y[n] are related by the
difference equation

2y[n] — y[n — 1] + y[n — 3] = x[n] — S5x[n — 4].

(a) Verify that S may be considered a cascade connection of two causal LTI systems
S and S> with the following input-output relationship:

Sy :2yy[n) = xi[n] — 5xi[n — 4],
1 1
Syt ya[n] = 5)’2[" - 1] - i}’z[” — 31+ x»[n].

(b) Draw a block diagram representation of S;.

(c) Draw a block diagram representation of S,.

(d) Draw a block diagram representation of S as a cascade connection of the block
diagram representation of §; followed by the block diagram representation
of S>.

(e) Draw a block diagram representation of S as a cascade connection of the block
diagram representation of S> followed by the block diagram representation
of § 1-

(f) Show that the four delay elements in the block diagram representation of S
obtained in part (¢) may be collapsed to three. The resulting block diagram
is referred to as a Direct Form II realization of S, while the block diagrams
obtained in parts (d) and (e) are referred to as Direct Form I realizations of S.
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2.60.
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Consider a causal LTI system S whose input x(¢) and output y(#) are related by the
differential equation

dy(r) dx(t)
01'7(1— + apy(r) = byx(1) + b d(r .

(a) Show that

t

!
y(t) = AJ v(rydr + Bx(t) + CJ x(T)dT,

- L

and express the constants A, B, and C in terms of the constants ay, a, by,
and b,.

(b) Show that § may be considered a cascade connection of the following two causal
LTI systems:

x(T)ydrT,

x

St oni() = Bx(1) + CJ

1

Sy i) = AJ yaAT)dT + x2(1).

— %

(¢) Draw a block diagram representation of ;.

(d) Draw a block diagram representation of S».

(e) Draw a block diagram representation of S as a cascade connection of the block
diagram representation of S; followed by the block diagram representation
of §-.

(f) Draw a block diagram representation of § as a cascade connection of the block
diagram representation of S» followed by the block diagram of representa-
tion S] .

(g) Show that the two integrators in your answer to part (f) may be collapsed into
one. The resulting block diagram is referred to as a Direct Form II realization
of S, while the block diagrams obtained in parts (e) and (f) are referred to as
Direct Form I realizations of S.

Consider a causal LTI system § whose input x(¢) and output y(¢) are related by the
differential equation

IO | dy(n)

; dx(1) d*x(1)
< dr? dt '

+ by
dt T de?

+ apy(t) = byx(t) + b

(a) Show that

t

v =A J

yr)dr + BJ (J y((T)dO’) dr

o —

+ Cx(t) + DJ x(T)dt + EJ (JT x(o) do‘) dr,

— L —x
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and express the constants A, B, C, D, and E in terms of the constants ay, ay, a»,
b(), b| s and bg.

(b) Show that S may be considered a cascade connection of the following two causal
LTI systems:

1 1 T
S;:y|(1):Cx1(t)+DJ X](T)dT"r-EJ (j X|(0’)d0’)d7,

S i w(t) = A[ yo(T)dT + Bf g yz(a)d(r) dr + x,(1).

—%

(¢) Draw a block diagram representation of ;.

(d) Draw a block diagram representation of S».

(e) Draw a block diagram representation of S as a cascade connection of the block
diagram representation of §; followed by the block diagram representation
of S».

(f) Draw a block diagram representation of S as a cascade connection of the block
diagram representation of S, followed by the block diagram representation
of § l-

(g) Show that the four integrators in your answer to part (f) may be collapsed into
two. The resulting block diagram is referred to as a Direct Form II realization
of S, while the block diagrams obtained in parts (e) and (f) are referred to as
Direct Form I realizations of S.

EXTENSION PROBLEMS

2.61. (a) In the circuit shown in Figure P2.61(a), x(t) is the input voltage. The voltage
y(t) across the capacitor is considered to be the system output.

L=1H
———— VT —
= t
c-1F Y
x(t) gﬁ) l
@ Figure P2.61a

(1) Determine the differential equation relating x(¢) and y(7).

(i) Show that the homogeneous solution of the differential equation from part
(i) has the form K e/ + K,e/>'. Specify the values of w| and w>.

(iii) Show that, since the voltage and current are restricted to be real, the natural
response of the system is sinusoidal.



